Date de publication : 7 juin 2018

wesave

Value-at-Risk, Expected Shortfall ou Maximum Drawdown ?

La pertinence dune mesure de risque pour gérer un portefeuille en accord avec le profil de risque dun client dépend de plusieurs critères.

Les mesures de risques doivent :

  • être compréhensibles pour les investisseurs,
  • être compatibles avec le support dinvestissement (obligation, action, OPCVM),
  • être testables,
  • ne pas être trop difficiles à calculer (temps et limite informatique).

Representation-des-pertes

Concernant la complexité, pour un client particulier (i.e. non professionnel), la mesure de risque la plus simple est sans aucun doute le Maximum Drawdown (MDD) qui représente la perte maximale réalisée au cours dune période définie. Elle ne nécessite que peu de calculs et peu dexplications complémentaires. La Value-at-Risk (VaR) représente les pertes que lon s’attend à subir à partir dun certain niveau (exemple : dans les pires 5%, le rendement sera inférieur à -x% — la VaR 100% correspond donc au MDD). On note déjà que cette mesure est plus difficile à comprendre pour une personne non initiée. LExpected Shortfall (ES) correspond à la moyenne des rendements qui dépassent ceux de la VaR pour le même niveau de confiance (exemple : dans les pires 5%, le rendement sera en moyenne de -x%). Ces deux dernières mesures sappuient sur des probabilités qui peuvent être difficiles à interpréter surtout lorsquelles concernent des événements rares (les crises notamment).

Selon le type dinstruments financiers utilisés, les mesures de risque sont plus ou moins pertinentes. En effet, si les actifs sont « non linéaires » (cest le cas des options par exemple), la VaR ne peut pas être utilisée. Lutilisation de la VaR dans ce cas précis sous-estime le risque total du portefeuille. Chez WeSave, tous nos investissements sont réalisés dans des ETF qui ne posent aucun problème de non-linéarité. Dès lors, les trois mesures sont pertinentes pour chiffrer le risque dun portefeuille. Toutefois, dans notre cas, la VaR et lES sont redondantes car elles évoluent parallèlement.

Comme nous lavons vu, le MDD est une mesure de risque intéressante pour un investisseur particulier. Malheureusement les portefeuilles construits à partir de cette mesure sont très instables et contiennent un grand risque derreur statistique car ils reposent sur une seule observation (la pire perte). Dès lors, la construction dun portefeuille ayant pour objectif la minimisation de cette mesure de risque nest pas appropriée.

La VaR nest pas nécessairement une « fonction convexe des poids » du portefeuille, ce qui signifie que trouver la composition optimale du portefeuille nest pas toujours chose aisée et cela peut être très consommateur en temps de calcul. Ainsi, dans la plupart des cas, lES est préférée. Toutefois, avec les moyens modernes de calculs informatiques, trouver la solution optimale à des problèmes doptimisation « non-convexes » est réalisable dans des délais comparables à des problèmes « convexes ». Ainsi, le surcoût en temps nécessaire à lutilisation de la VaR peut en valoir la peine compte tenu des importantes limites rencontrées par lutilisation de lES.

En effet, lES ne peut pas être utilisé pour des tests en situations réelles et une validation empirique du modèle utilisé. Cest ce que les mathématiciens appellent la propriété d’élicitabilité qui rend possible les backtests. Sans cette propriété, les gérants de portefeuilles sont obligés de croire les yeux fermés dans le modèle quils utilisent et ils découvriront a posteriori si le modèle est valide ou non. À linverse, la VaR possède cette propriété et peut donc être utilisée de manière robuste pour effectuer des backtests en situation réelle.

Conclusion

Pour conclure, les mesures de risques ont toutes des avantages et des inconvénients. Alors que le MDD est une mesure simple à suivre et comprendre pour un utilisateur final non initié à la gestion des risques, elle présente des limites importantes qui la rendent inutilisable pour la création de portefeuilles. La VaR peut représenter un problème destimation dans certains cas tandis que lES est très/trop lié au modèle théorique utilisé. Même si la VaR semble être la meilleure mesure de risque à utiliser pour construire un portefeuille, chez WeSave nous utilisons ces trois mesures de risque pour suivre l’évolution des 10 portefeuilles. Dailleurs, nous nen suivons pas 3 mais 16 en temps réel pour piloter au mieux le couple rendement/risque des portefeuilles.

Pour aller plus loin : Les mesures de risques pour gérer un portefeuille

Rémy Lambinet
Rémy Lambinet

Rémy Lambinet est gérant quantitatif, docteur en mathématiques appliquées à la finance, expert des produits indiciels, il intervient régulièrement en 2015 sur les thématiques liées aux ETF. Il rejoint WeSave.fr en janvier 2016 en tant que responsable de la gestion quantitative.

Category: ÉclaireurÉclaireur Juin 2018Économie et marchésVie pratique